

CISPR TR 16-4-4

Edition 2.2 2020-04 CONSOLIDATED VERSION

TECHNICAL REPORT

INTERNATIONAL SPECIAL COMMITTEE ON RADIO INTERFERENCE

Specification for radio disturbance and immunity measuring apparatus and methods –

Part 4-4: Uncertainties, statistics and limit modelling – Statistics of complaints and a model for the calculation of limits for the protection of radio services

INTERNATIONAL ELECTROTECHNICAL COMMISSION

ICS 33.100.10; 33.100.20 ISBN 978-2-8322-8261-8

Warning! Make sure that you obtained this publication from an authorized distributor.

CISPR TR 16-4-4

Edition 2.2 2020-04 CONSOLIDATED VERSION

REDLINE VERSION

INTERNATIONAL SPECIAL COMMITTEE ON RADIO INTERFERENCE

Specification for radio disturbance and immunity measuring apparatus and methods –

Part 4-4: Uncertainties, statistics and limit modelling – Statistics of complaints and a model for the calculation of limits for the protection of radio services

CONTENTS

FO	REWO	ORD		7
1	Scop	e		9
2	Norm	native re	eferences	9
3	Term	ns and d	efinitions	9
	3.1	Terms	and definitions	9
	3.2		ols and abbreviated terms	
4	Statis	•	complaints and sources of interference	
	4.1		uction and history	
	4.2		onship between radio frequency interference and complaints	
		4.2.1	Radio frequency interference to a fixed radio receiver	
		4.2.2	Radio frequency interference to a mobile radio receiver	
		4.2.3	Consequences of the move from analogue to digital radio systems	
	4.3	Toward	ds the loss of a precious indicator: interference complaints	
	4.4	CISPR	recommendations for collation of statistical data on interference	
		compla	aints and classification of interference sources	12
	4.5		for statistics of interference complaints	
5	A mo	del for	the calculation of limits	18
	5.1	Introdu	uction	
		5.1.1	Generation of EM disturbances	18
		5.1.2	Immunity from EM disturbances	18
		5.1.3	Planning a radio service	18
	5.2	Probab	pility of interference	19
		5.2.1	Derivation of probability of interference	
	5.3	Circum	nstances of interferences	
		5.3.1	Close coupling and remote coupling	
		5.3.2	Measuring methods	
		5.3.3	Disturbance signal waveforms and associated spectra	
		5.3.4	Characteristics of interfered radio services	
		5.3.5	Operational aspects	
		5.3.6	Criteria for the determination of limits	
	5.4	A math	nematical basis for the calculation of CISPR limits	
		5.4.1	Generation of EM disturbances (source of disturbance)	
		5.4.2	Immunity from EM disturbances (victim receiver)	
	5.5		ation of the mathematical basis	
		5.5.1	Radiation coupling	
		5.5.2	Wire-line coupling	34
	5.6		er suitable method for equipment in the frequency range 150 kHz to	42
		5.6.1	Introduction	42
		5.6.2	Derivation of limits	42
		5.6.3	Application of limits	47
		5.6.4	Overview of proposals for determination of disturbance limits for a given type of equipment	47
		5.6.5	Rationale for determination of CISPR limits in the frequency range below 30 MHz	48

	5.6.6	strength for the protection of radio reception in the range below 30 MHz	54
5.7		al for determination of CISPR limits in the frequency range above	
	5.7.1	Introduction	
	5.7.2	Consideration and estimated values of μ_{P1} to μ_{P7}	
	5.7.3	Equivalent EMC environment below and above 1 GHz	
	5.7.4	Overview on parameters of radio communication services operating in the frequency range above 1 GHz and up to 16 GHz with effect to electromagnetic compatibility	
		from CISPR Report No. 31 Values of mains decoupling factor in the 200 MHz	
		ative) Conversion of H-field limits below 30 MHz for measurement	74
		ative) Model for estimation of radiation from photovoltaic (PV) power ms	86
		ative) Model for the estimation of radiation from in-house extra low hting installations	119
Bibliogra	phy		133
radio ser Figure 1c radio ser Figure 1c radio ser Figure 1	vices wi c – Stan vices wi I – Stan vices wi – Stand	dard form for statistics on interference complaints recommended for th analogue modulation and mobile or portable radio reception	15
Ū		e <i>r</i>	28
Figure 3	– Model	for close coupling situations	30
		ple of conversion factors – field strength / common-mode voltage (in nt, found in practice	39
		ple of conversion factors – field strength generated by differential- at feed point, found in practice	40
		ple of conversion factors – field strength generated by differential- outside buildings and electrical substations, found in practice	41
		ple of conversion factors – field strength generated by differential- nside buildings, found in practice	42
Figure 8	– horizo	ntal plane radiation pattern on a small purely magnetic antenna	50
Figure 9	– typica	I source of magnetic field disturbance	52
Figure 10) – Mode	el for magnetic field limit at measuring equipment	55
Figure A.	1 – Mai	ns decoupling coefficient as measured by various authors	71
Figure A.		dian and minimum values of mains decoupling factor for the range	72

Figure A.3 – Typical distributions of deviations from median value of decoupling factor as indicated in Figure A.2	.72
Figure A.4 – Measurement of the mains decoupling factor	.73
Figure B.1 – Commercial tool model for H-field conversion	. 74
Figure B.2 – Commercial tool model for the application of image theory	.75
Figure B.3 – Photos of OATS measurement setup	. 76
Figure B.4 – Comparative simulation result with ground plane and with image theory	.76
Figure B.5 – Comparison between the simulated conversion factors and the measurement results	. 77
Figure B.6 – Conversion factor C_{3} min	. 78
Figure B.7 – Conversion factor $C_{10 \ min}$. 79
Figure B.8 – Conversion factor C _{10-3 min}	
Figure B.9 – Recommended conversion factor <i>CF</i> _{30m} to 3m ·····	
Figure B.10 – Recommended conversion factor <i>CF</i> _{30m} to 10m ······	
Figure B.11 – Recommended conversion factor <i>CF</i> _{10m} to 3m ······	. 85
Figure C.1 – Schematic overview of the considered model influence factors	.87
Figure C.2 – Schematic representation of probability of existence of PV generator groups in the field	. 90
Figure C.3 – Schematic representation of mean value $ar{\mathcal{C}}_{ exttt{PV}}$ and variance $\sigma_{ exttt{CPV}}$. 90
Figure C.4 – General model for coupling of CM disturbances of a GCPC to an attached photovoltaic power generating system (PV generator)	.91
Figure C.5 – Geometric representation of a PV generator with 18 modules	. 93
Figure C.6 – Field strength determination by maximization (height scan) along a red line	. 94
Figure C.7 – Geometrical representation of Group A PV generators1	101
Figure C 8 – Combined coupling factor $C_{PV_{Group A sim}}$ for Group A PV generators ($r = 10$ m)1	101
Figure C.9 – Geometrical representation of Group B PV generators1	102
Figure C.10 — Combined coupling factor $C_{ extsf{PV}_{ extsf{GroupBsim}}}$ for Group B PV generate	ors
(r = 10 m) 102 Figure C.11 – Geometrical representation of Group C PV generators1	103
Figure C.12 – Combined coupling factor $C_{ extst{PV}_{ ext{GroupCsim}}}$ for Group C PV generators	
(r = 10 m)	103
Figure C.13 – Geometrical representation of Group D PV generators1	104
Figure C.14 – Combined coupling factor ${f C_{PV}}_{_{\sf GroupDsim}}$ for Group D PV generators	
(r = 10 m)	104
Figure C.15 – Measurement setup	106
Figure C.16 – Antenna orientations	106
Figure C.17 – Coupling factor $C_{ extst{PV}_{ ext{Group Ameas}}}$ for Group A PV generators1	107
Figure C.18 – Coupling factor $C_{ extst{PV}_{ ext{Group Cmeas}}}$ for Group C PV generators1	108
Figure C.19 – Coupling factor $C_{\text{PV}_{\text{CHURD TRUE}}}$ for Group D PV generators	108

Figure C.20 – Ratio of registered PV power generating systems in Germany	110
Figure C.21 – Ratio of registered PV power generating systems in Sweden	111
Figure C.22 – Simulation results m_{TC} (test case)	113
Figure C.23 – Simulation results m_{L} (use case)	114
Figure C.24 – Overview of the calculated $U_{TC\ Limit}$ values for radio services between 150 kHz and 30 MHz at a distance of $d=10\ m$	118
Figure D.1 – Application of ELV lamps	
Figure D.2 – Typical components and wiring for an ELV lamp connected to a power source and the associated lumped-circuit model of the ELV part	
Figure D.3 – Coupling scenarios	123
Figure D.4 – Two wire scenario.	123
Figure D.5 – Field strength derived by Biot-Savart-law applied to a differential mode current in comparison with the values in CISPR 15:2018, Table 9 (3 m) converted to 10 m	125
Figure D.6 – Principal model used for the simulations	126
Figure D.7 – Electric field distribution (at 10 MHz) on a vertical plane at a distance of 10 m from the vertical two wire system	127
Figure D.8 – Coupling factor result for 3 different scenarios	128
Figure D.9 – Overview of the calculated $U_{\mbox{Limit}}$ values for radio services between	
150 kHz and 30 MHz	132
Table 1 – Classification of sources of radio frequency interference and other causes of complaint	17
Table 2 – Guidance survey of RFI measuring methods	24
Table 3 – Tabulation of the method of determining limits for equipment in the frequency range 0,150 MHz to 960 MHz	44
Table 4 – Calculation of permissible limits for disturbances at about 1 800 MHz from existing CISPR limits in the frequency range of 900 MHz	65
Table 5 – List of radio services, typical parameters, and influence factors	
Table B.1 – Conversion factor C_{3_min}	
Table B.2 – Conversion factor C_{10} _min	80
Table B.3 – Conversion factor C_{10-3} _min	82
Table B.4 – Recommended conversion factor CF _{30m} to 3m ·····	83
Table B.5 – Recommended conversion factor CF _{30m} to 10m ·····	84
Table B.6 – Recommended conversion factor CF_{10m} to $3m$	85
Table C.1 – Coupling factors $C_{PV_{lsim}}$	105
Table C.2 – Coupling factors $C_{PV_{imeas}}$ and calibration factors	109
Table C.3 – Overview coupling factors $ extbf{\emph{C}}_{ extsf{PV}_{i}}$	109
Table C.4 – Estimation of ρ_i	111
Table C.5 – Mismatch loss values m_{L} and m_{TC} determined by measurement and simulation	114

– 6 –	CISPR TR 16-4-4:2007+AMD1:2017
	+AMD2:2020 CSV © IFC 2020

Table C.6 – Calculation of U_{TC} Limit for radio services between 150 kHz and 30 MHz	
at a distance of d = 10 m	116
Table D.1 – Calculation of $U_{\mbox{Limit}}$ for radio services between 150 kHz and 30 MHz	131

INTERNATIONAL ELECTROTECHNICAL COMMISSION INTERNATIONAL SPECIAL COMMITTEE ON RADIO INTERFERENCE

SPECIFICATION FOR RADIO DISTURBANCE AND IMMUNITY MEASURING APPARATUS AND METHODS –

Part 4-4: Uncertainties, statistics and limit modelling –
Statistics of complaints and a model for the calculation of limits
for the protection of radio services

FOREWORD

- 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- 2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.
- 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.
- 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.
- 5) IEC provides no marking procedure to indicate its approval and cannot be rendered responsible for any equipment declared to be in conformity with an IEC Publication.
- 6) All users should ensure that they have the latest edition of this publication.
- 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications
- 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.
- 9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

This consolidated version of the official IEC Standard and its amendments has been prepared for user convenience.

CISPR 16-4-4 edition 2.2 contains the second edition (2007-07) [documents CISPR/H/147/DTR and CISPR/H/153/RVC], its amendment 1 (2017-06) [documents CIS/H/313/DTR and CIS/H/319/RVC] and its amendment 2 (2020-04) [documents CIS/H/402/DTR and CIS/H/407A/RVDTR].

In this Redline version, a vertical line in the margin shows where the technical content is modified by amendments 1 and 2. Additions are in green text, deletions are in strikethrough red text. A separate Final version with all changes accepted is available in this publication.

- 8 -

The main task of IEC technical committees is to prepare International Standards. However, a technical committee may propose the publication of a technical report when it has collected data of a different kind from that which is normally published as an International Standard, for example "state of the art".

This second edition of CISPR 16-4-4, which is a technical report, has been prepared by CISPR subcommittee H: Limits for the protection of radio services.

This second edition of CISPR 16-4-4 contains two thoroughly updated Clauses 4 and 5, compared with its first edition. It also contains, in its new Annex A, values of the classical CISPR mains decoupling factor which were determined by measurements in real LV AC mains grids in the 1960s. It is deemed that these mains decoupling factors are still valid and representative also for modern and well maintained LV AC mains grids around the world.

The information in Clause 4 – Statistics of complaints and sources of interference – was accomplished by the history and evolution of the CISPR statistics on complaints about radio frequency interference (RFI) and by background information on evolution in radio-based communication technologies. Furthermore, the forms for collation of actual RFI cases were detailed and structured in a way allowing for more qualified assessment and evaluation of compiled annual data in regard to the interference situation, as e.g. fixed or mobile radio reception, or analogue or digital modulation of the interfered with radio service or application concerned.

The information in Clause 5 – A model for the calculation of limits – was accomplished in several ways. The model itself was accomplished in respect of the remote coupling situation as well as the close coupling one. Further supplements of this model were incorporated regarding certain aspects of the coupling path via induction and wave propagation (radiation) of classical telecommunication networks. Furthermore, the calculation model on statistics and probability underwent revision and was brought in line with a more modern mathematical approach. Eventually the present model was extended for a possible determination of CISPR limits in the frequency range above 1 GHz.

This publication has been drafted in accordance with the ISO/IEC Directives, Part 2.

The committee has decided that the contents of the base publication and its amendments will remain unchanged until the stability date indicated on the IEC web site under "http://webstore.iec.ch" in the data related to the specific publication. At this date, the publication will be

- reconfirmed,
- · withdrawn,
- replaced by a revised edition, or
- amended.

IMPORTANT – The 'colour inside' logo on the cover page of this publication indicates that it contains colours which are considered to be useful for the correct understanding of its contents. Users should therefore print this document using a colour printer.

SPECIFICATION FOR RADIO DISTURBANCE AND IMMUNITY MEASURING APPARATUS AND METHODS –

Part 4-4: Uncertainties, statistics and limit modelling – Statistics of complaints and a model for the calculation of limits for the protection of radio services

1 Scope

This part of CISPR 16 contains a recommendation on how to deal with statistics of radio interference complaints. Furthermore it describes the calculation of limits for disturbance field strength and voltage for the measurement on a test site based on models for the distribution of disturbances by radiated and conducted coupling, respectively.

2 Normative references

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

IEC 60050-161, International Electrotechnical Vocabulary (IEV) – Part 161: Electromagnetic compatibility (available at http://www.electropedia.org)

CISPR 11, Industrial, scientific and medical—<u>(ISM) radio-frequency</u> equipment — <u>Electromagnetic</u> Radio-frequency disturbance characteristics — Limits and methods of measurement

CISPR 16-4-3, Specification for radio disturbance and immunity measuring apparatus and methods – Part 4-3: Uncertainties, statistics and limit modelling – Statistical considerations in the determination of EMC compliance of mass-produced products

CISPR 15:2018, Limits and methods of measurement of radio disturbance characteristics of electrical lighting and similar equipment

CISPR TR 16-4-4

Edition 2.2 2020-04 CONSOLIDATED VERSION

FINAL VERSION

INTERNATIONAL SPECIAL COMMITTEE ON RADIO INTERFERENCE

Specification for radio disturbance and immunity measuring apparatus and methods –

Part 4-4: Uncertainties, statistics and limit modelling – Statistics of complaints and a model for the calculation of limits for the protection of radio services

CONTENTS

1			_	
2			eferences	
3	Term	ns and d	lefinitions	9
	3.1	Terms	and definitions	9
	3.2	Symbo	ols and abbreviated terms	10
4	Stati	stics of	complaints and sources of interference	11
	4.1	Introdu	uction and history	11
	4.2	Relation	onship between radio frequency interference and complaints	11
		4.2.1	Radio frequency interference to a fixed radio receiver	11
		4.2.2	Radio frequency interference to a mobile radio receiver	11
		4.2.3	Consequences of the move from analogue to digital radio systems	11
	4.3	Towar	ds the loss of a precious indicator: interference complaints	12
	4.4		R recommendations for collation of statistical data on interference aints and classification of interference sources	12
	4.5	Forms	for statistics of interference complaints	13
5	A mo	del for	the calculation of limits	18
	5.1	Introdu	uction	18
		5.1.1	Generation of EM disturbances	18
		5.1.2	Immunity from EM disturbances	18
		5.1.3	Planning a radio service	18
	5.2	Probal	bility of interference	19
		5.2.1	Derivation of probability of interference	19
	5.3	Circun	nstances of interferences	20
		5.3.1	Close coupling and remote coupling	21
		5.3.2	Measuring methods	22
		5.3.3	Disturbance signal waveforms and associated spectra	24
		5.3.4	Characteristics of interfered radio services	25
		5.3.5	Operational aspects	26
		5.3.6	Criteria for the determination of limits	27
	5.4	A math	hematical basis for the calculation of CISPR limits	31
		5.4.1	Generation of EM disturbances (source of disturbance)	31
		5.4.2	Immunity from EM disturbances (victim receiver)	32
	5.5	Applic	ation of the mathematical basis	32
		5.5.1	Radiation coupling	
		5.5.2	Wire-line coupling	34
	5.6		er suitable method for equipment in the frequency range 150 kHz to	42
		5.6.1	Introduction	
		5.6.2	Derivation of limits	
		5.6.3	Application of limits	47
		5.6.4	Overview of proposals for determination of disturbance limits for a given type of equipment	47
		5.6.5	Rationale for determination of CISPR limits in the frequency range below 30 MHz	48

Figure A.3 – Typical distributions of deviations from median value of decoupling factor as indicated in Figure A.2	72
Figure A.4 – Measurement of the mains decoupling factor	73
Figure B.1 – Commercial tool model for H-field conversion	74
Figure B.2 – Commercial tool model for the application of image theory	75
Figure B.3 – Photos of OATS measurement setup	76
Figure B.4 – Comparative simulation result with ground plane and with image theory	76
Figure B.5 – Comparison between the simulated conversion factors and the measurement results	77
Figure B.6 – Conversion factor C_{3_min}	78
Figure B.7 – Conversion factor $C_{10_{min}}$	79
Figure B.8 – Conversion factor C_{10-3} _min	81
Figure B.9 – Recommended conversion factor <i>CF</i> _{30m} to 3m ······	
Figure B.10 – Recommended conversion factor <i>CF</i> _{30m} to 10m ······	84
Figure B.11 – Recommended conversion factor <i>CF</i> _{10m} to 3m ······	
Figure C.1 – Schematic overview of the considered model influence factors	87
Figure C.2 – Schematic representation of probability of existence of PV generator groups in the field	90
Figure C.3 – Schematic representation of mean value $\overline{\mathcal{C}}_{ t PV}$ and variance $\sigma_{ t CPV}$	90
Figure C.4 – General model for coupling of CM disturbances of a GCPC to an attached photovoltaic power generating system (PV generator)	91
Figure C.5 – Geometric representation of a PV generator with 18 modules	93
Figure C.6 – Field strength determination by maximization (height scan) along a red line	94
Figure C.7 – Geometrical representation of Group A PV generators	101
Figure C 8 – Combined coupling factor $C_{PV_{Group A sim}}$ for Group A PV generators (r = 10m)	101
Figure C.9 – Geometrical representation of Group B PV generators	102
Figure C.10 – Combined coupling factor $C_{ extstyle{PV}_{ extstyle{GroupBsim}}}$ for Group B PV gener	ators
(r = 10 m) 102 Figure C.11 – Geometrical representation of Group C PV generators	103
Figure C.12 – Combined coupling factor $m{C}_{ extsf{PV}_{ extsf{GroupCsim}}}$ for Group C PV generators	
(r = 10 m)	. 103
Figure C.13 – Geometrical representation of Group D PV generators	104
Figure C.14 – Combined coupling factor $ {f C}_{{\sf PV}_{\sf GroupDsim}} $ for Group D $$ PV generators	
(r = 10 m)	. 104
Figure C.15 – Measurement setup	. 106
Figure C.16 – Antenna orientations	. 106
Figure C.17 – Coupling factor $C_{\scriptscriptstyle {\sf PV}_{\scriptscriptstyle {\sf GroupAmeas}}}$ for Group A PV generators	107
Figure C.18 – Coupling factor $C_{ extstyle PV_{ extstyle Group C meas}}$ for Group C PV generators	108
Figure C.19 – Coupling factor $C_{PV_{GroupDmeas}}$ for Group D PV generators	108

- 6 -	CISPR TR 16-4-4:2007+AMD1:2017
	+AMD2:2020 CSV © IEC 2020

Table C.6 – Calculation of $U_{TC\ Limit}$ for radio services between 150 kHz and 30 MHz	
at a distance of d = 10 m	116
Table D.1 – Calculation of $U_{\mbox{Limit}}$ for radio services between 150 kHz and 30 MHz	131

INTERNATIONAL ELECTROTECHNICAL COMMISSION INTERNATIONAL SPECIAL COMMITTEE ON RADIO INTERFERENCE

SPECIFICATION FOR RADIO DISTURBANCE AND IMMUNITY MEASURING APPARATUS AND METHODS –

Part 4-4: Uncertainties, statistics and limit modelling –
Statistics of complaints and a model for the calculation of limits
for the protection of radio services

FOREWORD

- 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- 2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.
- 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.
- 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.
- 5) IEC provides no marking procedure to indicate its approval and cannot be rendered responsible for any equipment declared to be in conformity with an IEC Publication.
- 6) All users should ensure that they have the latest edition of this publication.
- 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications
- 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.
- 9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

This consolidated version of the official IEC Standard and its amendments has been prepared for user convenience.

CISPR 16-4-4 edition 2.2 contains the second edition (2007-07) [documents CISPR/H/147/DTR and CISPR/H/153/RVC], its amendment 1 (2017-06) [documents CIS/H/313/DTR and CIS/H/319/RVC] and its amendment 2 (2020-04) [documents CIS/H/402/DTR and CIS/H/407A/RVDTR].

This Final version does not show where the technical content is modified by amendments 1 and 2. A separate Redline version with all changes highlighted is available in this publication.

- 8 -

The main task of IEC technical committees is to prepare International Standards. However, a technical committee may propose the publication of a technical report when it has collected data of a different kind from that which is normally published as an International Standard, for example "state of the art".

This second edition of CISPR 16-4-4, which is a technical report, has been prepared by CISPR subcommittee H: Limits for the protection of radio services.

This second edition of CISPR 16-4-4 contains two thoroughly updated Clauses 4 and 5, compared with its first edition. It also contains, in its new Annex A, values of the classical CISPR mains decoupling factor which were determined by measurements in real LV AC mains grids in the 1960s. It is deemed that these mains decoupling factors are still valid and representative also for modern and well maintained LV AC mains grids around the world.

The information in Clause 4 – Statistics of complaints and sources of interference – was accomplished by the history and evolution of the CISPR statistics on complaints about radio frequency interference (RFI) and by background information on evolution in radio-based communication technologies. Furthermore, the forms for collation of actual RFI cases were detailed and structured in a way allowing for more qualified assessment and evaluation of compiled annual data in regard to the interference situation, as e.g. fixed or mobile radio reception, or analogue or digital modulation of the interfered with radio service or application concerned.

The information in Clause 5 – A model for the calculation of limits – was accomplished in several ways. The model itself was accomplished in respect of the remote coupling situation as well as the close coupling one. Further supplements of this model were incorporated regarding certain aspects of the coupling path via induction and wave propagation (radiation) of classical telecommunication networks. Furthermore, the calculation model on statistics and probability underwent revision and was brought in line with a more modern mathematical approach. Eventually the present model was extended for a possible determination of CISPR limits in the frequency range above 1 GHz.

This publication has been drafted in accordance with the ISO/IEC Directives, Part 2.

The committee has decided that the contents of the base publication and its amendments will remain unchanged until the stability date indicated on the IEC web site under "http://webstore.iec.ch" in the data related to the specific publication. At this date, the publication will be

- reconfirmed,
- withdrawn,
- replaced by a revised edition, or
- amended.

IMPORTANT – The 'colour inside' logo on the cover page of this publication indicates that it contains colours which are considered to be useful for the correct understanding of its contents. Users should therefore print this document using a colour printer.

SPECIFICATION FOR RADIO DISTURBANCE AND IMMUNITY MEASURING APPARATUS AND METHODS –

Part 4-4: Uncertainties, statistics and limit modelling – Statistics of complaints and a model for the calculation of limits for the protection of radio services

1 Scope

This part of CISPR 16 contains a recommendation on how to deal with statistics of radio interference complaints. Furthermore it describes the calculation of limits for disturbance field strength and voltage for the measurement on a test site based on models for the distribution of disturbances by radiated and conducted coupling, respectively.

2 Normative references

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

IEC 60050-161, International Electrotechnical Vocabulary (IEV) – Part 161: Electromagnetic compatibility (available at http://www.electropedia.org)

CISPR 11, Industrial, scientific and medical equipment – Radio-frequency disturbance characteristics – Limits and methods of measurement

CISPR 16-4-3, Specification for radio disturbance and immunity measuring apparatus and methods – Part 4-3: Uncertainties, statistics and limit modelling – Statistical considerations in the determination of EMC compliance of mass-produced products

CISPR 15:2018, Limits and methods of measurement of radio disturbance characteristics of electrical lighting and similar equipment